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MATHEMATICAT. PROBLEMS OF
MODELING STOCHASTIC NONLINEAR DYNAMIC SYSTEMS

By Richard E. Mortensen
TRW Systems Group

ABSTRACT

The purpose of this report is to introduce the engineer to the area
of stochastic differential equations, and to make him aware of some of
the mathematical techniques and pitfalls in this area. Topics discussed
include continuous-time Markov processes, the Fokker-Planck-Kolmogorov
equations, the Ito and Stratonovich stochastic calculi, and the problem

of modeling physical systems.



MATHEMATICAL PROBLEMS OF
MODELING STOCHASTIC NONLINEAR DYNAMIC SYSTEMS

By Richard E. Mortensen
TRW Systems Group

SUMMARY

Certain mathematical problems arise when one attempts to model a
stochastic dynamic system by means of a set of nonlinear ordinary dif-
ferential equations with white noise excitation. This report reviews
the basic facts about Markov processes and the Fokker-Planck-Kolmogorov
equations, and then illustrates the reason for the difficulties by an
example. Two current methods of treating stochastic differential equa-
tions, the Ito method and the Stratonovich method, are defined and
discussed. It is shown that each method is consistent within itself,
that, if properly used, the two methods are equivalent, and finally it
is shown how to translate results from one method to the other. A
philosophy for modeling physical systems with stochastic differential
equations is then advocated. The purpose of this report is to introduce
the engineer to the area of stochastic differential equations, and make
him aware of some of the mathematical techniques and pitfalls in this

area.

* Assistant Professor of Engineering, University of California at
Los Angeles, Los Angeles, California. (Consultant at TRW Systems Group)



1. INTRODUCTION

This paper discusses certain mathematical problems which arise in
attempting to model a stochastic dynamic system by means of a set of
nonlinear ordinary differential equations with white noise excitation.
This approach has been advocated in engineering literature at various
times over the past ten years. The appeal of this approach is that it
is the natural extension to stochastic systems of the state space approach
to deterministic systems which has met so much success in optimal control
theory. Furthermore, the state vector in such a model turns out to be
a vector Markov process, for which a substantial mathematical theory
exists; in particular, there is the theory of the Kolmogorov or Fokker-
Planck partial differential equation. In addition, as one would expect
of a state space approach, this method is especially suited to the study
of the transient behavior of the stochastic system, with steady-state, or

more precisely, stationary behavior obtained as a limiting case.

The engineering literature tends to give one the impression that the
major difficulties associated with this approach are computational.
Although it is not denied that the computaticnal difficulties are large,
it is the main point of this paper to show that a fundamental difficulty
may arise at an earlier phase of the analysis, namely, when the mathematical
model itself is chosen. In a sense, this difficulty is not computational
but conceptual, il.e. there may be a basic divergence between the implica-

tions of the mathematical model and the facts of physical reality.

This difficulty arises from the properties of the heuristic
mathematical idealization known as white noise, or its rigorous counter-
part Brownlan motion, which is heuristically the time integral of white
noise. The peculiar implications of the Brownian motion stochastic
process puzzled physicists of an earlier era, leading them to adopt a
stochastic process with more '"physical' properties, the Ornstein-

Uhlenbeck stochastic process.



Mathematically, the trouble arises when one attempts to apply the
usual rules of differential and integral calculus to functions of time
which are actually sample functions of a stochastic procegs. The result
has been that something of a controversy has appeared in recent literature
concerning two possible ways of extending ordiﬁary calculus to stochastic
functions: the so~called Stratonovich calculus, in which the usual
rules continue to apply, and the so-called Ito calculus, in which the
rules are changed. Although this subject has been discussed in several
papers in the last two or three years, one gets the impression after
reading some of these papers that the subject 1s more bewildering to the

reader than it was before he read the paper.

The aim of this report is to show, by means of examples which we have
attempted to choose to be as lucid as possible, the reasons for this
divergence. Further, we will suggest an approach to the problems of
mathematical modeling, analysis, and computation which seems to have
the qualities of being both mathematically rigorous and consistent with
physical reality.
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II. SYMBOLS

plant matrix

acceleration, ft/se02
input matrix

covariance matrix

Ito differential of F

time differential
differential of x
differential of Wiener process
expectation operator

base of natural logarithms
force, pounds

vector valued function
matrix valued function
time~varying coefficient

a function

approximation to an Ito integral

Ito integral

an index

an Ito integral

a constant
Lipschitz constant
an integer

mass, slugs

minimum of
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p(E,t)
p(E,t|M,s)
q(g,t)
a(g,t|n,s)
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v
v(t)
vi(t)
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z(t)

an integer

horizontal random force component
vertical random force component
random force parallel to flight path
random force perpendicular to flight path
a remainder

probability density for Aw
probability density function
transition density

density for Wiener process
transition density of Wiener process
dummy time variable

Stratonovich integral

time

magnitude of velocity vector

a random process

transpose of v

horizontal component of velocity
vertical component of velocity
Wiener process

state vector

time derivative of x

Tto solution

Stratonovich solution

& random process

a random process
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Aw(t)
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pr(E,tM,8)
ps(i,tlﬂ,S)

T

flight path angle

a time increment

increment of Wiener process
Dirac delta function
dummy variable

dummy variable
transition density for Xp

transition density for Xy

dummy time variable



111, THE ENGINEERING MODEL

Typically, the dynamic equations of motion that arise in the analysis
of engineering systems are a _statement of Newton's law of motion, F = ma,
possibly augmented by the inclusion of known frictional or dissipative
forces. Although the direct application of F = ma yields second order
differential equations, it is well known that it is always possible, by
adding more variables, to convert these to a set of coupled, first order,

and often nonlinear, differential equations of the form
x(6) = £(x(t), t) (1)

Here x and f are n-vectors. The vector x(t) is called the state of the

system at time t.

If now an engineer wishes to modify equation (1) to try to take
account of random forces in the environment, a natural way to proceed is

to write

x(6) = £(x(t), t) + 6(x(t), t) v(t) (2)

Here v(t) is an m—vector, representing the random force at time t, and
GC;(t), ?) is an nxm matrix. It is allowed to be a function of x and t
to take into account the possibility that the influence of the noise may
depend on the state of the system.

The function v(t) is a random process, i.e. for each fixed t the value
of the function v(t) is a random variable. In the absence of any special
knowledge about the nature of the random force, a commonly made assumption
is that v(t) is a so-called Gaussian white noise random process. This
means that for each fixed t the random variable has a Gaussian distribution
with zero mean and infinite variance. Furthermore, for any two times
ty, by, with t # t,, the two random variables v(tl) and v(t2) are
completely independent of each other.

Let E denote expectation, i.e. averaging across the statistical ensemble.

Let a prime denote the transpose of a vector or a matrix. Since v(t) is



e

a column vector, v'!(t) is a row vector. Mathematically, white noise is

characterized by the conditions

E v(tz} = 0 ; E{%(tl) v'(tz)} = C(tl) G(tl—tz) (3)

Here C(tl) is an m X m matrix, called the white noise covariance matrix,
which expresses how the components of the vector v(t,) are correlated
among themselves. It is meaningful to speak of such correlation even

though each component has infinite variance.

In the case of stationary white noise, the matrix C is constant,
independent of time. Strictly, it is only in this case that the name
"white!" can be Jjustified, because only in this case can one define a
power spectral density function. In this case, the power spectral density
function is constant, independent of frequency, analogous to the spectrum

of white light.

White noise is much the same kind of mathematical pathology in the
theory of random processes that the Dirac delta function is in the theory

of deterministic functions.

As is by now well appreciated, so long as one does only linear opera-
tions on a delta function, it is usually possible to interpret the result
in a meaningful way. However, one runs into trouble in trying to do non-
linear things to a delta function. The square or the logarithm of a delta

function is meaningless, for example.

A similar situation exists in the case of white noise. If the

differential equation (2) is linear, i.e. of the form
x(t) = A(t) x(t) + B(t) v(t) ) (4)

then it turns out that there is no difficulty in interpreting what is
meant by a solution of this differential equation. As a function of
t, x(t) turns out to be a Gaussian random process, and there is no

controversy about how to compute the mean and the covariance of this



process. The process x(t) is much better behaved than v(t), e.g. none

of the components of x(t) has infinite variance.

However, when the differential equation (2) is nonlinear, a problem
of interpretation arises. One might at first think that the nonlinear
equation (2) is simply meaningless, as in the case of the square of a
delta function. However, this is not the case. It turns out that there
are two distinct, meaningful ways of interpreting equation (2) which
appear in contemporary literature, and which are called respectively

the Ito and the Stratonovich interpretations.

As stated in the Introduction, this report will explore this Ito-
Stratonovich divergence. Each interpretation will be explained, as well
as the reason for the divergence. The two interpretations will be shown
to be equivalent, in the sense that it is possible to pass from the
results obtained under one interpretation to the results for the other
interpretation via a transformation formula. Finally, the problems of

real world modelling and computation will be discussed.

IV. THE FOKKER-PLANCK EQUATION

Before discussing this divergence and the subtleties of the stochastic
calculus, perhaps it will be well to review the area of the theory in which
there is no controversy. For ease of exposition, henceforth we will con-
sider only scalar-valued random processes, although the theory holds in

the vector valued case also.

Engineers can find an introduction to the theory of the Fokker-Planck
equation in references 1 and 2, which also contain further references.
This theory will not be developed here, but the major results will be
stated.

Consider the scalar stochastic differential equation

x(t) = £(x(t), t) + g(t) v(t) (5)



Here v(t) is Gaussian white noise, with
Ble(e)} = 05 Efv(e) v(s)} = 6(t-s) 6)

We assume that Jg(t)] > O for all t. We will also assume that f(x, t) and
g(t) are at least piecewise continuous functions of t, that f is at least
once differentiable with respect to x, and that f obeys the following

condition: there exist Kl’ K2 < @ such that

[£(x,t)] s ¥ + X, |x]

for 11 t and all x.

Aside from the change from vector-valued functions to scalar-valued
functions, the major difference between equation (2) and equation (5) is
that in (5), the function g(t) must be a function of t only, and not a
function of x. That is, the white noise enters additively; it is not

multiplied by any function of the solution of the differential equation.

Under this restriction, the Ito and the Stratonovich interpretations
of the solution of the differential equation coincide. The divergence
only arises when the white noise is multiplied by a function of the solution

of the equation.

In the earlier literature, e.g. reference 1, the stochastic differential
equation (5) is called a Langevin equation. In the more mathematical modern
literature, equation (5) is rewritten in a more rigorous manner. In order
to avoid the mathematical pathology associated with white noise, its
integral, the so-called Wiener or Brownian motion process w(t) is

introduced:
t

w(t) = fv(t) dt (7)

o

The process w(t) can be defined independently of v(t), merely by
stating that it is Gaussian and that

E{w(t)} = 0 ; Edw(t) w(s)} =min{t,s} (8)



By "multiplying through by dt", equation (5) is recast in the form
ax(t) = £(x(t),t) at + g(t) aw(t) (9)

or by integrating once, in the form of a stochastic integral equation

t t
x(t) = =x(o) + f f<x(t),t> at + f g(t) dw(t) (10)

[} (@]

The integral on the right,

t
] ety antey

]

being an integral with respect to a Wiener process, is a new kind of
integral, a so-called stochastic integral. However, so long as the func-
tion g(t) is restricted as mentioned above, i.e., that it is a non-random
function of t, then the Itc and Stratonovich interpretations of this
integral agree. It may be defined, e.g., as the limit in probability of

a sequence of sums of the form

n:l
1=0
where O = to < i, < t2 et < tn =1t , So far there is no problem; the

usual rules of cilculus continue to apply to this integral.

When the engineer tells the mathematician that what he really means
by a solution to the Langevin equation (5) is a solution to the integral
equation (10), then the mathematician is happy, because he can prove
existence and uniqueness of solutions to (10) with probability 1. Further-
more, the mathematician's solution to (10) turns out to have the sort of
properties that one intuitively expects that solutions to (5) might have,

so the situation is good.

11



Since for each t, x(t) is a random variable, it has a probability
distribution associated with it. Furthermore, this distribution will
be smooth enough so that it can be described by a probability density
function, p(§,t). Here the meaning of this function is that

o(,t) ag = Probls < x(b) <€ + dg} (11)

The variable £ is merely a parameter in the density function. It is not
the same as the value of the process x(t). In the density function p(g,t),

the two variables § and t are independent variables.

It turns out to be of great interest to study conditional densities,
where we condition on the known value of the process at an earlier time.

Therefore, define p(€,t|M,s) for s < t by

p(€,£]M,5) 4 = Prob {g < x(t) < £ + dg]x(s) = n} (12)

The function p(§,t[ﬂ,s) will be a function of all four independent parameters
€, M, t, s. When t, TN, and s are held fixed, it is a probability density
function of €, e.g., P(E,t|N,s) = 0 and

/ p(E,6]M,s) a8 = 1 (13)

—0

Suppose we tried conditioning on several past events. Let tl < t2 <t tn.

Consider the probability
Prob {g < x(tn) < € + dE | x(ti) =1 i=1,2, *-- n—l}

It turns out that for a process x(t) obtained as the solution to a stochastic

integral equation of the form (10), this conditional probability is merely
equal to p(§,t M, t ) dE.



Written mathematically, what we are saying is

Prob{% <x(t )< § +dg lx(ti) = M, i=1, 2,"‘,n—1}

Prob {§ < x(tn) < & + df | x(tn—l) = ﬂn_l}

I

p(&, t, | M5, t, 1) & (1)

Any process x(t) for which equation (14) holds for every integer n,
for every choice of tl, t2, e, tn’ provided only that tl < t2 < e < tn—l
< t_, is called a Markov process. Stated in words, the defining property
n
of a Markov process is that the single most recently observed value of the
process contains as much information about the future evolution of the
process as does knowledge of the entire past history of the process up to

and including the most recently observed value.

The conditional probability density function p(€,t|TM,s) plays a
fundamental role in the study of continuous Markov processes. This function
is customarily called the transition density for the process. The transi-
tion density P(£,t|T,s) may be obtained by solving the forward Fokker-
Planck equation (also called the forward Kolmogorov equation)

—_QQLJJL_) 2
o ;Jt = = —S—gtf(g,t) p(&,t|M,s)] +%g2(t) B_QLL%M
3€

—-o<cE <+, t>s (15)
with the boundary conditions

lim p(€,t]M,s) = 6(E-M) ; ll:'m p(g,t|n,s) = o (16)

t-s E (-

13



The transition density may equally well be obtained by solving ths
backward Fokker-Planck or Kolmogorov equation

ds 28

2
9 tiM.s) _ £(1,s) apﬂgéﬁlu,sl + & 2(t) ) QQEQEL],SZ

..oo<T]<+°°’ s< t (17)
with the boundary conditions

lim p(€,t{M,s) = 68(g-M) ; 1%111 p(E,t|Mn,s) =0 (18)
st —

Equation (15) is a partial differential equation for p considered as
a function of the independent variables € and t. The variables 1 and s
are merely parameters which enter through the boundary conditions (16).
On the other hand, equation (17) is a partial differential equation for p
as a function of the independent variables T and s. Here £ and t are
merely parameters which enter through the boundary conditions (18). The
coefficient functions f and g are the functions defined in (5) and (6).

From an engineering standpoint, the situation may be summarized by
saying that a complete probabilistic analysis of the properties of a stochastic
dynamic system described by (5) may be made by finding the transition
density p(E,t|M,s) as a solution to one of the Fokker-Planck equations
(if it satisfies one, it necessarily satisfies the other). This statement
is accurate, provided one is careful what he does in such an analysis. The

next sections will show what it means to be careful.

V. AN APPARENT PARADOX

Let us consider the Wiener process introduced in (7). The preceding
theory applies to this process, since by setting x(o) =0, £ =0, g =1,

equation (10) becomes



t
xw) = [ ane) (19)

i.e. x(t) =w(t). In order to make our point, it will suffice to consider
only the forward equation (15), and to consider its solution only for the
special case of s =0, T =0 in (16).

Denote this solution by q(§, t). Thus

q(E,t) d& = Prob{é‘s x(t) < € + d§ l x(o) = Q} (20)

where now x(t) is a Wiener process.

It is well known that q(§, t) is given by

a(€,b) = 2= =t (21)

Vamt

It is easily verified that this function obeys the forward equation

da(E.t) _ 1 2%a(e.t) (22)
2

and satisfies the boundary condition

lim q(§,t) = 6(§) (23)

t~o

Now suppose the Wiener process is passed through a memoryless nonlinear
device to produce a new process z(t). Since the device is memoryless, the
process z(t) will still be Markov, and the probability density for it will
obey a Fokker-Planck equation. Specifically, suppose that

15
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z(t) = sinh [x(t)] (24)
Define
p(ct) ag = Prov{¢ = a(t) <€+ ac | ao) = O (25)
By the rule for change of variables in probability densities,

p(C,8) = a(g,t) § (26)

Now %E sinh™ ¢ = V1 +¢% | so

2
.Ssinh_l;)
5 -
p(C,t) = Vi o 2t (27)

Either by making the change of independent variable & = sinh—lc in (22) and
using (26), or by direct differentiation of (27), one finds that the Fokker-
Planck equation satisfied by p{({,t) is

2

According to the theory in Doob (Ref. 3), this is the forward equation

corresponding to the stochastic differential equation

dz(t) = % z(t) dt + [1 + zz(t)]% dw(t) (29)

This resembles the stochastic differential equation (9) discussed in
the previous section. However, in regard to (9), it was specifically stated
that the coefficient g(t) which multiplies the noise had to be a non-random

function of t only. In (R9), the coefficient of the noise, namely

2 L
[1 + 2°(¢)]%, is a function of z(t).



Now, if we simply compute dz(t) from (24) using the chain rule of

ordinary calculus, we find

dz(t) = g’—x sinh x | ax(t)
x(t) = sinh™> [2(t)]
= cosh x | dax(t)

x(t) = sinh™ [z(t)]

dx(t)
x = sinh_l (z(t)]

1
2
{1+ sinh2 x]

I

[1 + 22(t)] dx(t) (30)

Since in the present case x(t) = w(t), this may be rewritten

=

aa(t) = [1+ 2@)] aw(s) (31)

The stochastic differential equations (29) and (31) differ by the
term 4 z dt. The guestion is, which is the correct stochastic differential

equation for generating the process z(t) from a Wiener process?

Ito and Doob would say that (29) is the correct equation. Stratonovich
would say that (31) is the correct equation. Let us pinpoint the exact

issue of disagreement by first stating the facts on which everybody agrees.
Everybody agrees on the following:

1. The Wiener process is a well~defined process. Its probability
density, given that the process starts at zero at time zero,
is correctly given by (21), and this function satisfies (22)
and (23).

17
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2. The process z(t) defined by (24) is a well-defined process.
Its density function, defined in (25), is correctly given by
(27), and this function satisfies (28). Thus, in particular,
both Stratonovich and Ito would agree that (28) is the correct
Fokker-Planck equation for the z(t) process defined by (24).

3. Everybody agrees that if we integrate (31) according to the
rules of ordinary calculus we do get z(t) = sinh {w(t)]
as the solution, while if we integrate (31) according to the
Ito calculus we do not get this as the solution.

L. TIto and Stratonovich would both agree that if we integrate (29)
according to the rules of Ito calculus we do get z(t) = sinh [w(t)]
as the solution, while if we integrate (31) according to ordinary

calculus, we do not get this as a solution,

Therefore, the situation is that the one unambiguous way to specify
a Markov process mathematically is to specify its transition density, or
equivalently, the Fokker-Planck equation obeyed by the transition density.
The divergence arises when one wishes to generate the specified process
as a solution to a stochastic differential equation forced by the dif-
ferential of a Wiener process. The divergence boils down to two different
ways of associating the coefficients in the Fokker~Planck equation with
the coefficients in the stochastic differential equation, and respectively

two ways of integrating this stochastic equation.

Each way is consistent within itself, as we have seen. Starting from
the process z(t) defined by the Fokker-Planck equation (28), the use of
Stratonovich rules associates the stochastic differential equation (31)
with (28). Integrating (31) by the Stratonovich rules yields
z(t) = sinh [w(t)].

On the other hand, the use of Ito rules will associate the stochastic
differential equation (29) with the Fokker~Planck equation (28). However,
integrating (29) by the Ito rules again yields z(t) = sinh [w(t)]. Further,



Ito would say that the computation of the differential dz(t) in (30)
is incorrect; if this computation is done by Ito rules then (29) results.
However, Stratonovich would say that (30) is a perfectly valid computation.

At first glance, it might seem academic to worry about this divergence
between Ito rules and Stratonovich rules. Each set of rules is consistent
within itself. If the same set of rules is consistently applied throughout
the whole computation, both methods yield the same result.

The mathematician discusses Markov process by starting with the
transition density for the process. He is able to associate a Fokker-
Planck equation in an unambiguous way with this transition density. When
he finds that he has two possible ways of modelling the process as the
solution to a stochastic differential equation, he will choose the way
which has the most mathematical elegance in its internal structure, and
which is capable of the greatest generalization. Considered from this
standpoint, the Ito calculus is the "right" choice. 1Indeed, the procedure
Just described is precisely the one followed by Doob in his book

(reference 3).

However, the question is not so simple for the engineer. He cannot
resolve the issue on the basis of mathematical elegance alone. The engineer
does not start with the transition density. As discussed in the earlier

sections, the engineer starts with a differential equation which he has

obtained on the basis of known physical laws. He then adds a white noise
forcing term to get a stochastic model. If the coefficient of the noise
is itself random, then there are two possible ways of interpreting the
equation, leading to two different Fokker-Planck equations and two
different processes. The question i1s, which process does one "really"

get in the physical world? Which kind of calculus does nature use?

The answer to this question hinges on whether white noise "really"
exists, or whether the concept of white noise is only a convenient
approximation which we use in place of a more detailed knowledge of the
properties of the noise process. The true situation is certainly the
latter, since noise with a truly flat power density spectrum out to

infinite frequency would carry infinite total power. However, this

19



20

then implies that there is really no such thing as a Markov process
either, and the whole theory of the Fokker-Planck equation goes down

the drain.

Therefore, the whole theory of white noise, stochastic differential
equations, Markov processes, and the Fokker-Planck equation must be
approached from the standpoint of an approximate model rather than an
exact model of physical reality. It is, of course, possible to use
non-white noise in the model, but now one is faced with the problem
of specifying the power density spectrum of the noise, which is usually
completely unknown at high frequencies, even though it can be measured
as flat at low frequencies. Furthermore, use of a non-flat high frequency

spectrum complicates the computations tremendously.

Once one realizes the kind of approximation that is being made, it
turns out that it is possible to use either the 1to or the Stratonovich
rules and obtain equally accurate results, provided that one is careful
in setting up the mathematical model and that one is aware of the

subtleties involved.

The paradox of obtaining two different stochastic processes as
solutions to the same stochastic differential equation thus turns out
to arise from the pathological nature of white noise. This paradox can
be avoided by treating this pathology with proper respect. In the fol-

lowing sections we will examine the situation in more detail.

VI. THE ITO CALCULUS

In order to introduce the Ito calculus, let us begin by examining
the Wiener process w(t) more carefully. Let At be some very small, but

not infinitesimal, increment of time. Define

Aw(t) = w(t + At) - w(t) (32)



For fixed t and At, w(t + At) and w(t) are both Gaussian random variables,
so Mw(t) is also a Gaussian random variable.

Let q(E, t|M, s) be the transition density for -the Wiener process,

a(g,t[M,s) 4§ = Prob {g sw(t) < § + aglw(s) ==T1} (33)

By the definition of the Wiener process, this density is given by

2
q(git'ﬂ,s) = S — e 2(t_S) (314-)
2r{t-s)
With somewhat of an abuse of notation, define the conditional
probability density
Pp(E15) a(as) = Prob {ag = an(t) < o€ + aOlWe) =5} (35)

Since we are conditioning on the fixed event {w(t) = §}, observe that

Prob {A§ < Aw(t) < AE + d(aE)|w(t) = §}

Prob {g + AE < w(t) + Aw(t) < § + AE + d(ag)|w(t) = §}

i

Prob & + 45 < w(t + 4t) < § + A5 + A(AE)|u(t) = f—;} (36)

It follows from (33) - (36) that

Ppu(8E]E) = a(E + 48, t + At]E, t)

1 e Lﬁﬂiéﬁ)_:;jifi
Varl (t+at) - t] *P Y2l (t+At) ~ t]
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= = p,(88) (37)

In the last line of (37) we have written pAw(Ag) to denote the

unconditional probability density for the random variable Aw(t), i.e.

P (AE) d (AE) = Prob {Af < Aw (t) < AE + d (AE)} (38)

The important point is that
Py, (A | &) =y, (88 (39)

i.e., the distribution of the increment Mw (t) is independent of w(t), the
state of the process at time t. This is not generally true of random
processes, or even of Markov processes. The Wiener process w(t) belongs

to a special class of processes known as processes with independent

increments.

From (37) and (38), we see that the random variable Aw(t) defined in
(32) is gaussian with mean zero and variance At. The fact that E {(Aw)z}
is first order in At is what causes the peculiarities of the Ito stochastic

calculus.

Let F be any smooth real-valued nonlinear function of a real variable.
Consider F(W(t + At)), where W(t) continues to denote the Wiener process.

By Taylor series and (32),
Fw (£ + A)) = F (w(t) + aw (t))

= F @W(t)) + F' @W(t)dw(t) + %— F'' (w(t)') w(t)1% + ——  (40)
Using the distribution of Aw(t), we have

E { (Aw)k } =0, k odd

E{ w51 = 1.3.5... (k=1) )2, k even (41)



Use the notation 0(At) to denote a remainder consisting only of terms of order
(A't)-2 and higher.

Suppose now we tried to define

Pli(t + At)) ~ FGu(t)) 42)

d
Fre Fw(t)) = 1lim e

At>0
From (40) and (41), it follows that

%— EiF"(w(t))} At + 0 (At)

E S—j—; F(w(t))} - lm = (43)
1

= 15 7' Go))

On the other hand, 1f one computer the total differential dF(w(t)) using

the chain rule of ordinary calculus, one has
AF(w(t)) = F' (w(t)) dw (t) (44)

By passing from an increment Aw(t) to a differential dw(t), it follows from
(39) that dw(t) is independent of w(t). Therefore,

E {dF (W(£)) } = E {F'" w(¥)) dw(t)}

E {F' W(t))} E {aw(t) } =0 (45),

since E {dw(t)} = 0 by (41). ©Now (45) would imply that
E (G F () =0 (46),

in contradiction to (43).

The point is that because of the fact that E {(Aw)z} = At, the définition
of the derivative (42) no longer leads to the usual rules of calculus. Ito
was the first to show how the rules of calculus should be modified to handle
this phenomenon. First of all, instead of computing the derivative as in
(42), one should compute the differential dF(t), because the differential

3 . 3 . w
dw(t) can be rigorously interpreted whereas the derivative QEéEL can not.
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As given in reference (4), the Ito rule for the stochastic differential

in the present case is
4 F () = F' (W) daw(t) + = B (w(e) de 47,

where now dI means Ito differential. Note that this rule is now consistent
with Doob's treatment of the Fokker-Planck equation. Let us apply (47) in
the special case when F(w(t)) = sinh [w(t)].

Now F'(W) = cosh w, F''(W) = sinh w, so (47) says

d; sinh [W(£)] = cosh w(t) dw(t) + 7 simh w(t) dt (48)
2 1/2
Let us write z = sinh w. Then, cosh w= [1 + z7] , so (48) can be
rewritten as . ) 1/2
aIz(t) = 5 2(t) dt + [1 + 2°(8)] dw (t) (49)

which is the same as (29). Thus, the Ito rule (47) for the total differential

is consistent with the Fokker-Planck equation (28).

Since the rule for computing total differentials has now been changed
from (44) to (47), we must expect a corresponding change in the rule for
integration. Let us write (I) S when an integral is to be understood in

the Ito sense, and continue to write just S for ordinary integrals.

We wish to preserve the fundamental property of calculus, that the
integral can be interpreted as an anti-derivative. Therefore, we require

that

1
65 ﬁo d; FG(o)

Applying this to (47) yields

F (u(t)) - F Gt ) (50).

t
(1) f ! dp FM@(t)) = F (w(t)) - F (w(t )
t

o
t t
1 1 1
= (1) [ F' (w(t)) dw(t) +5 f F"' (w(t)) dt (51)
t t
o o

2



This may be rewritten as

t . |
(1) L ' Fr{p(t)) aw(t) = F({ﬂ(tl)> - Flw(t,)) - %jt lF,.(w(tD at  (52)

Now let g(x) be any once-differentiable function. Define

x

G(x) =f g(g) dg (53)
o
Then, using (52) with F replaced by G,

by Y
I wit) = (I Gr(w{t)) aw(t)
()ftog<w(t>)d<> ()fto (w(t)

t
1
= a(w(t)) - G(w(to)) - %L G" (w(t)) at
w(t) tl
= fw(to) g(g) a8 -~ %fto g' (w(t)) dt (54)
w(tl)

In (54), the notation-j' g(€) d€ means compute J[g(g) dg as

w(to)
an ordinary integral, treating € as a deterministic dummy variable of
integration, and then evaluate between the random limits w(tl) and w(to).
This, incidentally, is essentially what Stratonovich has in mind in his

definition of the stochastic integral.
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Let (S) jrdenote the Stratonovich integral. Then, in the present
context,

t w(t,)
() ,[olg(w(t)) aw(t) = f( ; g(g) dg (55)

wit

Therefore, (54) can be rewritten

tl tl tl
W w(t) = (8) W W -3 ! 6
(1) ft g(w(t)) aw(t ( ft g((t)) aw(t) ft g' (w(t)) dt (56)

o}
which is a special case of the formula given by Stratonovich in reference (5)
for the comnection between Ito integrals and Stratonovich integrals.

The Ito calculus has some surprising consequences. For example, let
g(w(t)) =w(t) in (56). By the notation g'(w(t)) we mean, of course,

g'(u(v) = &8 (57),
g =w(t)
so that in the present case g'(ﬁ(t)) =1, Now,
féds = 3¢° (58),
so using (55) and (56) we obtain
t
[1 _ L2 , 2 ,
(1) N w(t) dw(t) = 2w (tl) - 2w (to) - E(tl - to) (59),
o

an example which is also given by Doob.



The presence of the %(tl - to) term in (59) can be made more
plausible by the following considerations. Let us consider

E{(I) f: w(t) dw(t)} - El E{w(t) dw(t)} (60)

As in (45), we have (61)

E{w(t) dw(t)} - E{w(t)} E{dw(t)} -0 (61),

since the increment dw(t) is understood to be independent of w(t). Therefore,

we conclude

t
1

E{(I)‘/; w(t) dw(t)} =0 (62).
o

Now recall that the Wiener process was defined such that w(c) = O.
Thus, by (21) we have that

E{qz(tl)} = b E{WZ(J;O)} =t 63).

Taking the expected value of both sides of (59) now gives

E{(I) f:l w(t) dw(t)} %E{wz(tl)} - %E{qz(to)} -3k - t,)
o

= Bty -3t -ty -t ) = 0 (64),

in agreement with (62). Thus, the %(tl - to) can be viewed as a correction
term which insures that (62) holds.
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However, these considerations also imply that for the Stratonovich

integral,

oy
E{(S)ft we) ane)} = 3 - 1)) £ O (65).

o

Thus, for the Stratonovich integral, it cammot be true that dw(t) is
independent of w(t), for we have just seen that this independence is what

makes the expected value of the Ito integral always gzero.

In fact, this is precisely the case. Stratonovich interprets the

differential dw(t) in such a way that it is not independent of w(t).

The Ito calculus is based on the fact that the increment Aw(t)

defined in (32) is independent of w(t), and has mean zerc and variance At.

In contract, Stratonovich works with a "Stratonovich increment!" defined

as
ag(t) = w(t + g—t) —w(t - g—t) (66).

This increment still has mean zero and variance At, but it is pot independent
of w(t). We will examine the Stratonovich calculus in more detail in the

next section.

This report is written in such a way as to be (we hope) pedagogically
palatable to engineers. Consequently, our treatment of stochastic differ-
ential equations and stochastic calculus differs drastically from the
rigorous mathematical treatment given in references 3 and 4. Rather than
carefully stating and proving theorems, we are trying to convey the basic
ideas involved by considering only special cases and examining illustrative

examples.

So far, we have discussed the Ito calculus by following the approach
historically used in presenting ordinary calculus to students for the first



BB

time, Namely, we introduced the derivative first, as the sort of limit

given in (42). The integral was then introduced as an antiderivative.

In the modern, rigorous approach to calculus, which is usually presented
to students only after their intuition has been sharpened, the integral
is defined directly from first principles. The Riemann integral is
defined as a limit of Riemann sums, and the Lebesgue integral is defined

by use of measure theory.

Similarly, in a rigorous approach to stochastic calculus, the Ito
integral is defined first, as a stochastic limit of Riemann~type sums.
The Ito differential formula (47) is then derived as a consequence of
this integral.

Let us sketch briefly the definition of the Ito integral as a limit
of sums. Let w(t) be a Wiener process. Let z(t) be any random process
having the properties that, for all t, z(t) and [w(tr) - w(t)] are independent
for all T > t, and that

T
f 22(t) dt < © 67)

(e]

with probability ome. Note that, for © < t, z(t) and [w(t) - w(t)] may be

dependent. Let O = to <t < t2 < < tn =T, Let

1

A = max | t. - t. (68)
n 1<i<n i i-1

Choose any sequence of partitions to’ tl’ sen, tn such that
lim An = 0,
T+

29
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The object is to define the ITto integral

T
J = (I)f z(t) aw(t) (69).
Define
n
L=y a(ty ) De(t) - wlt, )] (70)
k=1

Note that the integrand Z(tk_l) is always evaluated at the beginning of
the interval [t, ,,
taken. Therefore, z(tk_l) and [w(tk) - w(tk_l)] are always independent.

tk] over which the increment [w(tk) - w(tk_l)] is

Consequently,

E{In} = lil E{z(tk_l)} E{w(tk) - w(tk_l)} = 0 (71)

It is now possible to prove that the sequence of random variagbles In
converges in probability to some limiting random variable J. This limit
is called the Ito integral. It has the property that E{;} = 0.

Note that the class of random processes z(t) which may be used as
integrands here is very broad. It is only required that z(t) be square
integrable over the interval of integration and that the present value
of z(t) is always independent of all future increments of w(t). In fact,
there is not even any reason why the integrating process w(t) has to be
a Wiener process. References 3 and 4 discuss this in detail. The point
is that the definition of the stochastic integral given by Ito is really
quite general, much more so than our heuristic derivation of (56) would

indicate.



VII. THE STRATONOVICH CALCULUS

In the previous section we asserted that a derivat’_ .e defined as
a limit of the form (42) is consistent with an integral defined as a
limit of sums of the form (70), and we gave some examples to make this
assertion plausible. The resulting stochastic calculus is called the
Ito calculus. By examples such as (48) and (59) it was illustrated that
the rules of the Ito calculus differ from the usual rules of ordinary
calculus.

In reference (5), Stratonovich proposed a definition of the stochastic
integral under rather restrictive conditions which leads to a stochastic
calculus whose rules are the same as ordinary calculus. Basically, what
Stratonovich did was to show that the formula (56) could be made rigorous.
Thus, with the Ito integral on the left-hand side of (56) already well-
defined, the Stratonovich integral on the right-hand side of (56) becomes
well-defined.

Therefore, Stratonovich did not give a fundamental definition of a
new stochastic integral, but only defined the new integral in terms of
the already existing Ito integral. Furthermore, the new integral is not
defined for forms as general as (69). It is only defined for the special
case of (69) in which z(t) is of the form

2(t) = glu(t), ©) (72),

where g(x, t) is a non-random function of the two arguments x, t. Conse-
quently, the Ito integral remains both more fundamental and more general

than the Stratonovich integral.

It is tempting to suppose that a fundamental definition of the
Stratonovich integral could be given, in anology with (70), by taking

a sequence of sums of the form
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# = (b1 * Y
I, = Z z(—z'—) Lw(t, ) - wlt, ;)] (73)
k=1

Unfortunately, such a sequence of sums cannot be shown to converge, in
general, even in such a weak sense as convergence in probability. The
Stratonovich integral is not versatile enough to be suited for many

applications for which the Ito integral is suited.

The Stratonovich integral is just versatile enough to be suited to
the integration of stochastic differential equations. Consider the fol-

lowing generalization of (9).
ax(t) = £(x(e), t) at + g(x(t), ) aw(t) (74)

The functions f(x, t) and g(x, t) are assumed to be jointly continuous
in x and t, once differentiable with respect to x, and to satisfy the

following condition: there exist constants Kl’ K2 < «@ such that

A

[£(x, )| = K + K, |x]|

A

lg(x, t)] Ko+ Ky [ x|

for all t and all x.

By rewriting (74) as an integral equation, one obtains

t t
x(t) = x(o) +f £(x(v), ©) ar +f gGe(7), ) aw(v) (75)



The stochastic integral on the right has as its integrand g(x(t), ),
rather than g(@(r), T) as is required by (72). However, by giving a
multi-dimensional definition of his integral, Stratonovich was able to
show how the integral in (75) could be recast in the desired form. There-
fore, it is possible to say that the stochastic integral on the right-
hand side of (75) can be interpreted as a Stratonovich integral. That

is, Stratonovich integrals of the form

T

f g(e(t), ) aw(t)

@]

can be defined, provided dx(t) and dw(t) are connected by a stochastic
differential equation such as (74). This is apparently the most general

situation for which the Stratonovich integral can be defined.

It is now peossible to give an existence and uniqueness proof of
solutions to the stochastic integral equation (75) when the stochastic
integral is interpreted in the Stratonovich sense, in analogy to the
type of proof using Picard iteration that Doob gives for the case of

an Ito integral.

The Stratonovich and the Ito solutions of (75) will of course be
different, because of the divergence between the two Integrals indicated
by (56). Call xI(t) the Ito solution and xs(t) the Stratonovich solution.
Explicitly, we have

t t
x(t) = x(0) f £(e;(7),7) ar + (1)]{ g (e (7),7) aw() (76)

»
—
o
S
Ii

t t
x_(0) f £(e (v),7) av + (s)fo g (v),m) () (77)
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Although xI(t) and xs(t) are two different processes, they both
still turn out to be Markov processes. Call pI(g,t[ﬂ,s) the transition
density associated with XI(t), and ps(g,tlﬂ,s) the transition density

associated with xs(t).

As given by Doob, pI(E,tlﬂ,s) obeys respectively the forward and

backward Kolmogorov equations

a2

op3(€,t[M,5)

= = S [2(5,8) py(8,8(M,0)] 1 a0 eseln1 (e,
30 (5,8]M,5) 30,(8,t[M,s) 3%, (8,8]1,5)
e = () — g+ 3 (N,8) — (79).

am
On the other hand, Stratonovich shows that ps(g,tlﬂ,s) obeys respec—

tively the forward and backward equations

3 (8,t[1,5) .
—E—r— = (e, p (8, In,8)]) %{%g g(5,4)3: 8 (5, 1) ps(s,tln,s>j}

ot
(80),
ap (€,t]M,8) dp (8,tM,8) 3 20 (8,4]M,8)

We saw earlier that if (29) is interpreted in the Ito sense, then the
appropriate forward Kolmogorov equation is (28). If one now uses the
Stratonovich rule (80) for the forward equation, one finds that if (31)
is interpreted in the Stratonovich sense, then the appropriate forward
equation is again (28). This is as it should be, since the Ito solution

of (29) and the Stratonovich solution of (31) are the same process, namely



z(t) = sinh [w(t)] (82),
as we saw earlier.

This would suggest that it ought to be possible to obtain the Ito
solution xI(t) of (76) also as the solution of some Stratonovich egquation,
and vice versa. Indeed, this turns out to be the case.

both references (5) and (8) that xI(t) also obeys

It was shown in

t
xI(t) = xI(o) + J( [f(xI(T),T> - %g(%l(r),€> glC%I(T),j)] dt
o

t
+ (3) f £ (e (v),7) au(v) (83).

where

g Ge,b) = 28lat) (84).

Similarly, the solution xs(t) of (77) also obeys

t
xs(t) = xs(o) + JE [fCﬁS(T),T> + %g(ks(r),?) glCQS(T),T)] dt

t
+ (1) f g (v),7) aw(r) (85).

Therefore, although the Ito integral is more fundamental and more

general than the Stratonovich integral, it turns out that when we restrict



our attention to Stochastic differential equations of the form (74),

the two definitions of the stochastic integral lead to two different,

but interchangeable, theories.

VIII. MODELING THE REAL WORLD

We saw in the last sectlon that the stochastic differential equation
(74) is ambiguous. The ambiguity may be removed by writing the equation
in integral form with the type of integral definitely indicated, as in

(76) and (77).

We now return to the situation discussed at the beginning of this
report. Suppose an engineer has a deterministic model of a dynamic system
of the form of equation (1). Suppose that he wants now to include the
effects of stochastic forces in the enviromment, and that physical reasoning
suggests that a plausible stochastic model is equation (2). Which way
should he interpret this equation, Ito or Stratonovich? Which kind of

stochastic integration does Nature herself perform?

In order to answer this question, it must be kept clearly in mind
exactly what is the purpose of a mathematical model. Presumably we have
in front of us a physical dynamic system, i.e. a "black box", whose out-
put is a random process. For simplicity, suppose this random process is

scalar-valued, and call it y(t).

In order to take advantage of the theory of Markov processes, one

wishes to obtain y(t) by means of a state-output relation of the form
7(t) = n(x(s),v) (86),

where x(t) is an n-dimensional vector-valued Markov process. The value

of n, the statistics of the process x(t), and the deterministic function



h are to be chosen in some suitable way so that the statistical properties
of the process y(t) obtained from (86) approximate to an acceptable degree
of accuracy the sample statistics of the observed output of the black box.

It will further be convenient to obtain the Markov process x(t) by
means of a stochastic differential equation of the form (2). Once the
statistics of the x(t) process have been specified, we have seen in the
previous sections how the functions f and G may be chosen so that either

the Jto or the Stratonovich interpretation may be used.

Since the form of the function h in (86) and the coordinatization of
the state space are at our disposal, one may be able to make this choice
in such a way that the matrix G in (2) is not a function of x(t), i.e. G
would be a purely deterministic function of time. In this case, it is
possible to avoid the Ito-Stratonovich divergence altogether, as we have

sSeell.

The point of view being taken here is that the modeling problem con-
sists of trying to make the statistics of the output of the mathematical
model agree with the statistics of the physically observable output of a

given black box. There is no claim that equations (2) and (86) "really"
portray what is "actually happening" inside the box, since the inside

of the box is not observable to us.

This philosophical approach to the problem is generally known as the

phenomenological approach, in contrast to what might be called an axiomatic

approach.

1f one adopts this phenomenclogical approach of working backwards
from the output with the only objective being to match the generated out-
put with the observed data, then the choice between the Ito and Stratonovich
calculi becomes merely a matter of personal preference. On this level,
mathematicians will prefer the Ito calculus because of its elegance and
generality, while engineers will prefer the Stratonovich calculus because
of their familiarity with its rules.
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It seems to the present author that this is perhaps the best resolu-
tion of the controversy, since 1t avoids having to answer the question of

whether "nature!" prefers Ito integrals or Stratonovich integrals.

Another way of reaching essentially the same conclusion is to realize
that true white noise cannot exist in the physical world. Any noise
process, regardless of how flat its power density spectrum appears at
low frequencies, must have a spectrum which eventually drops off to zero
at sufficiently high frequencies, in order for the total power carried
by the process to be finite. Physically, the dropping off of the spectrum
may occur because of quantum mechanical effects if for no other reason.
White noise is reminiscent of the '"ultraviolet catastrophe' which appeared

when black-body radiation was treated by classical physics.

Consequently, as pointed out previously, the concepts of the Wiener
process and of a Markov process are mathematical idealizations which can

only approximate physical reality.

Suppose we have a sequence of continuous-time stochastic processes,
of finite total power, which become better and better approximations of
white noise as one passes to the limit. In references (7) and (8), the
point is made that the Ito and Stratonovich integrals behave differently
under passage to the limit. Our point here is that this is no cause for
concern, provided that one understands what 1s happening and views it

appropriately, because Nature herself never passes to the limit.

For example, if one wishes to simulate equation (2) on a digital
computer, since the digital computer operates necessarily in discrete
time, the simulation output will be a discrete-time approximation to
the desired continuous-time process. It is known how to program the
computer so that its output will approximate either the Ito solution of

(2) or the Stratonovich solution of (2) to any reasonable accuracy.



The same remarks apply to analog simulation, Now, the analog
computer operates in continuous time, but since it must necessarily
employ a physical noise generator, the spectrum of the noise cannot be
truly white. This is in contrast to the digital computer, where it is

possible to obtain true discrete—time white noise., Nevertheless,

Professor T. Kailath of Stanford mentioned in a recent talk (reference 9)
a way of rigging the analog computer so that it will approximate either

Ito integration or Stratonovich integration.

The above remarks still have not answered the question of what an
engineer should do when he already has a deterministic model of a physical
system, and he wants to convert it to a stochastic model. The safest
answer 1s that he should throw away the deterministic model, and remodel
the whole problem, with the objective being to get the statistics of the
output of a Monte Carlo computer simulation to agree with the statistics
of the observed data from the physical system. Any effort less than this

is an attempt to find a shortcut, and may yield an incorrect model.

As an example of the kind of situation that may occur in modeling,
consider the planar motion of a particle of unit mass, subject to no

deterministic forces.

In inertially fixed Cartesian coordinates, the dynamic equations of

motion (analogous to equation (l)) are

x‘rx(t) =0
(87).
\'ry(t) = 0

Suppose we introduce flight path coordinates and write Ve = V cos B,

vy =V sin B. The flight path equations of motion are

vV =0
(88).

Il

VB 0
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If one integrates both (87) and (88), starting from corresponding
initial conditions, both (87) and (88) yield the same straight line for
a trajectory.

Now consider making the jump from equation (1) to equation (2).
Let nx(t) and ny(t) be independent Gaussian white noises, each of unity

power density. Equation (87) becomes

\'rx(t) = nx(t)
(89).
x‘ry(t) = ny(t)

In order to write these equations in Ito form, introduce the two

Wiener processes

t
Wx(t) = j; nx('r) dt
(90)
t
wy(t) = Jl; ny('r) dt
The Tto form of (89) is
dvx(t) = dwx(t)
(91),
dvy(t) = dwy(t)

and of course the velocity vector of the particle is a two dimensional

Wiener process.



The defining relations for the flight path coordinates may be written

]

Pe) = v+ vA)
(92).
. v, ()

B(t) )

1l

tan

If one computes total time differentials according to the rules of ordinary

calculus, one obtains

v v
— —X = i
dv = 7 dvx + vz av, cos B dvx + sin B dv
(93)
Vx Yx sin B cos B
dg = - dv. + =5 dv = - dv_ + dv
v2 x V2 y v X v y

By (91) and (93), therefore, the Stratonovich form of the stochastic

equation of motion in flight path coordinates is

av(t) cos B(t) sin B(t) dwx(t)_
= : (94).
s t s @gt)
as (t) - lg(t) COv(t) dwy(t)

Now suppose that one computes the total time differential of (92)
according to the rules of the Ito stochastic calculus, or alternatively,
one computes the Ito correction term for (94) according to the rule given
in reference 8. Either way, the Ito differential equation corresponding

to (94) is



L2

av(t) \-f%t—) cos B(t) sin B(t) dwx(t.).
= at + | (95)
ds (t) 0 - Sl?,(iﬁ)ﬁ Cc’;(i()t) aw (t)

Thus, the dBf equation is the same in both Ito and Stratonovich forms,

but the dV equation differs by a term.% dat.

Let p be the transition density for the (V,8) process. The forward
partial differential equation obeyed by this density can be written down
from (95) using the rule given by Doob, or it can be written down from
(94) using the rule given by Stratonovich. Either way, one finds that the

equation is

2 2
op  _ o) FL ) 12 p l o
= - = pl + 3 + (96)
ot oV 1V av2 2V2 8B2

Equation (96) is the equation obeyed by the transition density of a
two dimensional Wiener process expressed in polar coordinates, as can be
verified by starting with the diffusion equation in rectangular ccordinates

and applying the rules for change of varlables in probability densities.

Summarizing what we have so far, the stochastic differential equation
of motion of a particle of unit mass whose velocity vector is a planar
Wiener process are given in Cartesian coordinates by (91), in Stratonovich
form in flight path coordinates by (94), and in Ito form in flight path
coordinates by (95). In Cartesian coordinates, the Ito and Stratonovich
forms of the equations coincide; in flight path coordinates they do not
coincide. The choice of which one to use is entirely a matter of personal
preference, because (91), (94), and (95) are merely three different, but

equivalent, ways of describing exactly the same process.



In (89), it was implicitly assumed that qx(t) and ny(t) are
independent of jx(t) and v_(t), or stated more rigorously, in (91) the
increments dvx(t) and dvy(t) are independent of vx(t) and vy(t). Physi-
cally, we have a white noise force field which is fixed in inertial
coordinates, through which the particle moves. When the situation is
viewed in flight path coordinates, the force on the particle appears to

be correlated with the flight path angle B(t).

Since the Stratonovich equation (94) can be manipulated according
to the rules of ordinary calculus, let us re-introduce the white noise

forces n and ny and rewrite (94) in engineering fashion as

V(t) cos B(t) sin B(t)] [ (t)

VB(t) - sin B(t)  cos B(t)[ | n (+)

Both components of this vector now have the physical dimensions of force.
Let n,, and Ql respectively be the forces parallel and perpendicular to
the flight path. Thus

n“(t) [cos B(t) sin B(t) nx(t)
= (98)
gL(t) - sin B(t) cos B(t) ny(t)
By definition of n, and ny,
nx(t) 0
E = (99),
ny(t) 0
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{{nx(t )J[nx(‘r) ny('r)]} [1 o]
E = 6(t - T) (lOO).
ny(t) 0 1

Now consider
B(t)}

n,l(t) f’ nll(t)
E{Lﬁt)]} - E{L_L(t)}
fcos B(t) sin B(t) n (t)
TN sinee)  cos e(t)] E{Lyuj

l’l”(t) [n“('r) Il_L(T)]
E [ J g(t), B(t)
?lﬁt)

cos B(t)  sin B(t)] [[n, (t)]ln (v) ny(T)] cos B(t) -sin B(7)
| A T
sin B(t) cos B(t) sin B(t) cos B(x)

[%os B(t) sin B(t)J[l OJ[?OS g(t) - sin B(T)J
= 6(t - 7)
~ sin B(t) cos B(t)JLO 1j|sin B(x) cos B(w)

cos [B(t) - B(T)] sin [B(t) - B(7)]
6§(t - )

g

ny(t)

(102)

- sin [B(t) - B(T)] cos [B(t) - g(t)]



However, the 6-~function is zero except when t = v, and when t = T the
matrix in the last line in (102) becomes the identity. Thus, it appears
that '

[nl I(t)}[n, I (%) nl('r)]
E
nl(t)

1 03
B(t), B(T)) = 68(t - 7) J (103),
0 1

and consequently

. [n”(t)}[n' | () n_J_(T)]
?l(t)

nll(t) [nll(T) ﬂL(T)]
= EqE [ J B(t), B(v)
jl(t)
1 0
= 6(1; - 1:)[ J (lOl.;).
0 1
m )
Thus, the noise force vector Japparently has the same mean and
nf (t)
covariance as white noise. Combining (97) and (98), one may write
V(t) nll(t)
N J (105).
VB (t) ?L(t)
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At first glance, (105) appears to be equivalent to what one would
obtain by making (88) stochastic directly, by putting a white noise force
vector on the right-hand side of (88). Let us explore this further.

Let nl(t) and nz(t) be two independent Gaussian white noises, each of

unity power density. Then

nl(t) 0
. - (106)
n2(t) 0
n (700, (v)  ny()] 1 o
E t) = 8(t - T) o . (107).
n
2

Now consider the stochastic differential equation

V(t) n, (t)
) = (108)
VB(t) n,(t)

The question is, is the process generated by (108) different from the
process generated by (105)? At first glance, comparing (101) to (106)
and (104) to (107), one is tempted to conclude that (105) and (108)

generate the same process. 1In fact, the two processes are quite different.

Introduce the two Wiener processes

t
wy (&) f n (x) av (109)

t
wz(t) = j— nQ(T) dr (110)



The Ito interpretation of (108) is

dv(t) 1 0 dwl(t)
= 1 (111)
dg(t) ) dw, (t)
The forward Kolmogorov equation corresponding to (111) is
2 2
ot 2 2 V2 2 :
aVv 2 oB

The two Ito equations (95) and (111) are clearly different. Further,
the Kolmogorov equations (96) and (112) do not have the same solution,
i.e. the transition density for the process described by (95) is different
from the transition density for the process described by (111). If two

processes have different transition densities, they are different processes.

why, then, do (105) and (108) appear to be so similar? The safest
answer is that the manipulations in (101) through (104) are not only non-
rigorous, but they are probably meaningless. Another answer is contained

in the following plausibility argument based on the v equation alone.

For the solution V(t) to (105) we have in mind exactly the same random
process as the V(t) component of the Ito solution of (95). Since this is
the magnitude of the velocity along the flight path, it can never be negative.
In fact, one can view the v%€7 dt Ito correction term in (95) as being the
force which keeps V(t) always non-negative, since the expected value of the
second term in (95) is zero. Thus, n,‘ in (105) must somehow be correlated
with V.
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On the other hand, for the solution V(t) of (108) we have in mind
exactly the same random process as the V(t) component of the Ito solution

of (111). But this can be written explicitly as
v(t) = V(o) +w (t) (113).

Since wl(t) has a Gaussian distribution, there is nothing to prevent V(t)
here from being negative at certain times. In fact, as soon as one realizes
this, one realizes that for this reason both (108) and (111) are physically

meaningless.

The main purpose of this example was to 1llustrate the kind of paradox
one can create for oneself by trying to make direct calculations involving
white noise. In any case of doubt in a modeling problem, the safe thing
to do is to look at both the Ito and the Stratonovich forms of the equations,

and make sure they both have a meaningful interpretation.

The ultimate objective of setting up a mathematical model is to get
the predicted output of the model to be an acceptable approximation to the
actually observed output of the physical system one is trying to model.
This 1s really the only criterion by which one can judge the correctness

of a model.

IX. CONCLUSION

In this report, the problem of medeling stochastic nonlinear dynamic
systems has been discussed. The various mathematical pitfalls and para-
doxes that exist were illustrated by examples. It was asserted that, once
the engineer understands the mathematics, he should adopt a phenomenological

approach for applying it to real-world problems.
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